
Fundamental Concepts of

Programming Languages
Functional Programming Fundamentals

Lecture 13

conf. dr. ing. Ciprian-Bogdan Chirila

University Politehnica Timisoara
Department of Computing and Information Technology

January 10, 2023

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 1 / 52

FCPL - 13 - Functional Programming in

Practice
1 Avoiding flow control
2 Comprehensions
3 Generators
4 Dictionaries and sets comprehensions
5 Recursion
6 Eliminating loops
7 Streams

Stream creation
Stream operations

8 Bibliography
conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 2 / 52

Avoiding flow control

FCPL - 13 - Functional Programming in

Practice
1 Avoiding flow control
2 Comprehensions
3 Generators
4 Dictionaries and sets comprehensions
5 Recursion
6 Eliminating loops
7 Streams

Stream creation
Stream operations

8 Bibliography
conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 3 / 52

Avoiding flow control

Avoiding flow control

a block of code contains:
outside loops like for or while
assignment of state variables within loops
modification of data structures
branch statements if, elif, else, try, except, finally

it seems natural and easy
problems with side effects due to state variables and
mutable data structures

a mutable object can be changed after its creation
an immutable object cannot be changed after its
creation

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 4 / 52

Avoiding flow control

Avoiding flow control

the problem
it difficult to reason accurately about what state data is
in at a given point in a program

the solution
is not to focus on the data construction
but on describing what the data collection consists of

imperative flow control is about the ”how” rather
than the ”what”

to focus on ”what” by refactoring the code

to pus the data construction in a more isolated place

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 5 / 52

Avoiding flow control

Encapsulation

configure the data to start with

collection = get_initial_state()

state_var = None

for datum in data_set:

if condition(state_var):

state_var = calculate_from(datum)

new = modify(datum, state_var)

collection.add_to(new)

else:

new = modify_differently(datum)

collection.add_to(new)

Now actually work with the data

for thing in collection:

process(thing)

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 6 / 52

Avoiding flow control

Encapsulation

tuck away construction of data

def make_collection(data_set):

collection = get_initial_state()

state_var = None

for datum in data_set:

if condition(state_var):

state_var = calculate_from(datum, state_var)

new = modify(datum, state_var)

collection.add_to(new)

else:

new = modify_differently(datum)

collection.add_to(new)

return collection

Now actually work with the data

for thing in make_collection(data_set):

process(thing)

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 7 / 52

Avoiding flow control

Encapsulation

there is no program logic change

we shifted from how do we construct the collection

to what does make collection() create

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 8 / 52

Comprehensions

FCPL - 13 - Functional Programming in

Practice
1 Avoiding flow control
2 Comprehensions
3 Generators
4 Dictionaries and sets comprehensions
5 Recursion
6 Eliminating loops
7 Streams

Stream creation
Stream operations

8 Bibliography
conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 9 / 52

Comprehensions

Comprehensions

are a way to make the code more compact

they shift the focus from how to what

are expressions that use the same keywords as loop
and conditional blocks

inverts their order to focus on the data rather than
on the procedure

changing the form of the expression makes a large
difference in how we reason about the code

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 10 / 52

Comprehensions

Comprehensions

collection = list()

for datum in data_set:

if condition(datum):

collection.append(datum)

else:

new = modify(datum)

collection.append(new)

collection = [d if condition(d) else modify(d)

for d in data_set]

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 11 / 52

Comprehensions

Comprehensions

we saved a few characters and lines :)

we did a mental shifting by thinking what a
collection is

we avoided to think about the state of collection in
the loop
in Python there are several types of comprehensions

generator comprehensions;
set comprehensions;
dict comprehensions.

as caveat nesting comprehensions may stop
clarifying and start obscuring

the solution is to refactor into functions
conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 12 / 52

Generators

FCPL - 13 - Functional Programming in

Practice
1 Avoiding flow control
2 Comprehensions
3 Generators
4 Dictionaries and sets comprehensions
5 Recursion
6 Eliminating loops
7 Streams

Stream creation
Stream operations

8 Bibliography
conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 13 / 52

Generators

Generator comprehensions

have almost the same syntax as list comprehensions

there are no square brackets around them, but
parentheses

they are also lazy

they represent a description of how to get the data
but it is not realized until one explicitly asks for it

by calling .next() on the object
by looping over it

saves memory for large sequences

defers computation until is actually needed

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 14 / 52

Generators

Generator comprehensions

log_lines = (line for line in read_line(huge_log_file)

if complex_condition(line))

the imperative version

def get_log_lines(log_file):

line = read_line(log_file)

while True:

try:

if complex_condition(line):

yield line

line = read_line(log_file)

except StopIteration:

raise

log_lines = get_log_lines(huge_log_file)

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 15 / 52

Generators

Generator comprehensions

another imperative version

class GetLogLines(object):

def __init__(self, log_file):

self.log_file = log_file

self.line = None

def __iter__(self):

return self

def __next__(self):

if self.line is None:

self.line = read_line(log_file)

while not complex_condition(self.line):

self.line = read_line(self.log_file)

return self.line

log_lines = GetLogLines(huge_log_file)

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 16 / 52

Dictionaries and sets comprehensions

FCPL - 13 - Functional Programming in

Practice
1 Avoiding flow control
2 Comprehensions
3 Generators
4 Dictionaries and sets comprehensions
5 Recursion
6 Eliminating loops
7 Streams

Stream creation
Stream operations

8 Bibliography
conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 17 / 52

Dictionaries and sets comprehensions

Dictionaries and sets comprehensions

>>> {i:chr(65+i) for i in range(6)}

{0: ’A’, 1: ’B’, 2: ’C’, 3: ’D’, 4: ’E’, 5: ’F’}

>>> {chr(65+i) for i in range(6)}

{’A’, ’B’, ’C’, ’D’, ’E’, ’F’}

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 18 / 52

Recursion

FCPL - 13 - Functional Programming in

Practice
1 Avoiding flow control
2 Comprehensions
3 Generators
4 Dictionaries and sets comprehensions
5 Recursion
6 Eliminating loops
7 Streams

Stream creation
Stream operations

8 Bibliography
conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 19 / 52

Recursion

Recursion

functional programming is about expressing flow
control using recursion instead of loops

thus, we can avoid altering the state of any variable
within the algorithm
recursion can be iteration having just another name

it is in the style of Lisp
it is not in the style of Python (slow at recursion and has
limited stack depth sys.setrecursionlimit(5000) default is
1000)

recursion can be used in solving problems by
partitioning into smaller problems

Python lacks tail call elimination feature
conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 20 / 52

Recursion

Example of recursion being iteration

def running_sum(numbers, start=0):

if len(numbers) == 0:

print()

return

total = numbers[0] + start

print(total, end=" ")

running_sum(numbers[1:], total)

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 21 / 52

Recursion

Example of recursion being iteration

this approach is not recommended

the iteration which modifies the total state
variable is more readable

it is likely to call the function on sequences larger
than 1000

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 22 / 52

Recursion

Recursion less trivial example

def factorialR(N):

"Recursive factorial function"

assert isinstance(N, int) and N >= 1

return 1 if N <= 1 else N * factorialR(N-1)

def factorialI(N):

"Iterative factorial function"

assert isinstance(N, int) and N >= 1

product = 1

while N >= 1:

product *= N

N -= 1

return product

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 23 / 52

Recursion

High order functions

from functools import reduce

from operator import mul

def factorialHOF(n):

return reduce(mul, range(1, n+1), 1)

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 24 / 52

Recursion

Quicksort example

def quicksort(lst):

"Quicksort over a list-like sequence"

if len(lst) == 0:

return lst

pivot = lst[0]

pivots = [x for x in lst if x == pivot]

small = quicksort([x for x in lst if x < pivot])

large = quicksort([x for x in lst if x > pivot])

return small + pivots + large

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 25 / 52

Eliminating loops

FCPL - 13 - Functional Programming in

Practice
1 Avoiding flow control
2 Comprehensions
3 Generators
4 Dictionaries and sets comprehensions
5 Recursion
6 Eliminating loops
7 Streams

Stream creation
Stream operations

8 Bibliography
conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 26 / 52

Eliminating loops

Eliminating loops

we to try to eliminate all loops from a Python
program

this practice is not always desirable because it
affects readability

it is simple to apply it in a systematic manner

if we find a function call inside a loop we can use
the high order function map()

there is no repeated binding of the iteration variable

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 27 / 52

Eliminating loops

Statement and map based loop

for e in it: # statement-based loop

func(e)

map(func, it) # map()-based "loop"

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 28 / 52

Eliminating loops

Statement and map based loop

let f1, f2, f3 (etc) be functions that perform actions

an execution utility function

do_it = lambda f, *args: f(*args)

map()-based action sequence

map(do_it, [f1, f2, f3])

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 29 / 52

Eliminating loops

Using map

>>> hello = lambda first, last: print("Hello", first, last)

>>> bye = lambda first, last: print("Bye", first, last)

>>> _ = list(map(do_it, [hello, bye], [’David’,’Jane’], [’Mertz’,’Doe’]))

Hello David Mertz

Bye Jane Doe

>>> do_all_funcs = lambda fns, *args: [list(map(fn, *args)) for fn in fns]

>>> _ = do_all_funcs([hello, bye],[’David’,’Jane’], [’Mertz’,’Doe’])

Hello David Mertz

Hello Jane Doe

Bye David Mertz

Bye Jane Doe

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 30 / 52

Eliminating loops

Eliminating loops

statement-based while loop

while <cond>:

<pre-suite>

if <break_condition>:

break

else:

<suite>

FP-style recursive while loop

def while_block():

<pre-suite>

if <break_condition>:

return 1

else:

<suite>

return 0

while_FP = lambda: (<cond> and while_block()) or while_FP()

while_FP()

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 31 / 52

Streams

FCPL - 13 - Functional Programming in

Practice
1 Avoiding flow control
2 Comprehensions
3 Generators
4 Dictionaries and sets comprehensions
5 Recursion
6 Eliminating loops
7 Streams

Stream creation
Stream operations

8 Bibliography
conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 32 / 52

Streams

Streams

streams are wrappers around a data source

allow us to operate with the data source

allows bulk processing convenient and fast

do not store data

are not a data structures

do not modify the underlying data source

java.util.stream present from Java 8

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 33 / 52

Streams Stream creation

Stream creation

private static Employee[] arrayOfEmps =

{

new Employee(1, "Jeff Bezos", 100000.0),

new Employee(2, "Bill Gates", 200000.0),

new Employee(3, "Mark Zuckerberg", 300000.0)

};

Stream.of(arrayOfEmps);

private static List<Employee> empList = Arrays.asList(arrayOfEmps);

empList.stream();

// streaming from individual objects

Stream.of(arrayOfEmps[0], arrayOfEmps[1], arrayOfEmps[2]);

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 34 / 52

Streams Stream creation

Stream builder

Stream.Builder<Employee> empStreamBuilder = Stream.builder();

empStreamBuilder.accept(arrayOfEmps[0]);

empStreamBuilder.accept(arrayOfEmps[1]);

empStreamBuilder.accept(arrayOfEmps[2]);

Stream<Employee> empStream = empStreamBuilder.build();

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 35 / 52

Streams Stream operations

forEach operation

@Test

public void whenIncrementSalaryForEachEmployee_thenApplyNewSalary()

{

empList.stream().forEach(e -> e.salaryIncrement(10.0));

assertThat(empList, contains(

hasProperty("salary", equalTo(110000.0)),

hasProperty("salary", equalTo(220000.0)),

hasProperty("salary", equalTo(330000.0))

));

}

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 36 / 52

Streams Stream operations

map operation

@Test

public void whenMapIdToEmployees_thenGetEmployeeStream()

{

Integer[] empIds = { 1, 2, 3 };

List<Employee> employees = Stream.of(empIds)

.map(employeeRepository::findById)

.collect(Collectors.toList());

assertEquals(employees.size(), empIds.length);

}

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 37 / 52

Streams Stream operations

map operation

produces a new stream after applying a function to
each element of the original stream

the new stream could be of different type

in the example we converted a stream of Integers
into a stream of Employees

each Integer is passed to the function
employeeRepository::findById()

it returns the Employee object

thus, it forms an Employee stream

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 38 / 52

Streams Stream operations

collect operation

@Test

public void whenCollectStreamToList_thenGetList()

{

List<Employee> employees = empList.stream().collect(Collectors.toList());

assertEquals(empList, employees);

}

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 39 / 52

Streams Stream operations

collect operation

is the way to get the elements out of the stream
once we are done with the processing

performs mutable fold operations on data elements
held in the Stream instance

fold operation means repacking elements to some
data structures and applying additional logic

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 40 / 52

Streams Stream operations

filter operation

@Test

public void whenFilterEmployees_thenGetFilteredStream()

{

Integer[] empIds = { 1, 2, 3, 4 };

List<Employee> employees = Stream.of(empIds)

.map(employeeRepository::findById)

.filter(e -> e != null)

.filter(e -> e.getSalary() > 200000)

.collect(Collectors.toList());

assertEquals(Arrays.asList(arrayOfEmps[2]), employees);

}

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 41 / 52

Streams Stream operations

filter operation

produces new stream of elements that passed a
given test

the test is specified by a predicate
in the example:

we filtered out the null references for invalid employee ids
we filetred out the employees having salaries under a
certain threshold

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 42 / 52

Streams Stream operations

findFirst operation

@Test

public void whenFindFirst_thenGetFirstEmployeeInStream()

{

Integer[] empIds = { 1, 2, 3, 4 };

Employee employee = Stream.of(empIds)

.map(employeeRepository::findById)

.filter(e -> e != null)

.filter(e -> e.getSalary() > 100000)

.findFirst()

.orElse(null);

assertEquals(employee.getSalary(), new Double(200000));

}

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 43 / 52

Streams Stream operations

findFirst operation

return an Optional innstance for the first entry in
the stream

the Optional instance may be null
in the example:

we return the employee with the salary greater than a
threshold
if no employee exists then null is returned

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 44 / 52

Streams Stream operations

toArray operation

@Test

public void whenStreamToArray_thenGetArray()

{

Employee[] employees = empList.stream().toArray(Employee[]::new);

assertThat(empList.toArray(), equalTo(employees));

}

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 45 / 52

Streams Stream operations

toArray operation

we saw the example with the collection of elements

we also can get an array out of the stream by using
toArray() method
in the example:

the Emplyee[]::new creates an empty array of Employee
it is then filled with elements from the stream

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 46 / 52

Streams Stream operations

flatMap operation

@Test

public void whenFlatMapEmployeeNames_thenGetNameStream()

{

List<List<String>> namesNested = Arrays.asList(

Arrays.asList("Jeff", "Bezos"),

Arrays.asList("Bill", "Gates"),

Arrays.asList("Mark", "Zuckerberg"));

List<String> namesFlatStream = namesNested.stream()

.flatMap(Collection::stream)

.collect(Collectors.toList());

assertEquals(namesFlatStream.size(), namesNested.size() * 2);

}

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 47 / 52

Streams Stream operations

flatMap operation

a stream can hold complex data structures like
Stream<List<String>>

flatMap() helps to flatten the data structure to
simplify further operations
in the example:

we converted the Stream¡List¡String¿¿ to a simple
Stream¡String¿

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 48 / 52

Streams Stream operations

peek operation

@Test

public void whenIncrementSalaryUsingPeek_thenApplyNewSalary()

{

Employee[] arrayOfEmps =

{

new Employee(1, "Jeff Bezos", 100000.0),

new Employee(2, "Bill Gates", 200000.0),

new Employee(3, "Mark Zuckerberg", 300000.0)

};

List<Employee> empList = Arrays.asList(arrayOfEmps);

empList.stream()

.peek(e -> e.salaryIncrement(10.0))

.peek(System.out::println)

.collect(Collectors.toList());

assertThat(empList, contains(

hasProperty("salary", equalTo(110000.0)),

hasProperty("salary", equalTo(220000.0)),

hasProperty("salary", equalTo(330000.0))

));

}conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 49 / 52

Streams Stream operations

peek operation

forEach is a terminal operation

sometimes we need to perform multiple operations
on each element before any terminal operation

peek() is usefull in such situations
in the example:

the first peek() is used to increment the salary of each
employee
the second peek() is used to print the employees
finally collect() is used as terminal operation

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 50 / 52

Bibliography

FCPL - 13 - Functional Programming in

Practice
1 Avoiding flow control
2 Comprehensions
3 Generators
4 Dictionaries and sets comprehensions
5 Recursion
6 Eliminating loops
7 Streams

Stream creation
Stream operations

8 Bibliography
conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 51 / 52

Bibliography

Bibliography

1 Horia Ciocarlie - The programming language
universe, second edition, Timisoara, 2013.

2 Carlo Ghezzi, Mehdi Jarayeri - Programming
Languages, John Wiley, 1987.

3 Ellis Horrowitz - Fundamentals of programming
languages, Computer Science Press, 1984.

4 Donald Knuth - The art of computer programming,
2002.

5 David Merz - Functional programming in Python,
2015.

6 Eugen Paraschiv - A Guide to Java Streams in Java
8: In-Depth Tutorial With Examples, 2022.

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 10, 2023 52 / 52

	Avoiding flow control
	Comprehensions
	Generators
	Dictionaries and sets comprehensions
	Recursion
	Eliminating loops
	Streams
	Stream creation
	Stream operations

	Bibliography

