Fundamental Concepts of
Programming Languages

Functional Programming Fundamentals
Lecture 13

conf. dr. ing. Ciprian-Bogdan Chirila

University Politehnica Timisoara
Department of Computing and Information Technology

January 10, 2023

VR Fundamental Concepts of Programming Lang January 10, 2023 1/52



I —
FCPL - 13 - Functional Programming in
Practice

@ Avoiding flow control

© Comprehensions

© Generators

@ Dictionaries and sets comprehensions
© Recursion

@ Eliminating loops

@ Streams

@ Stream creation
@ Stream operations

© Bibliography
o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 2/52



Avoiding flow control

FCPL - 13 - Functional Programming in
Practice
@ Avoiding flow control

BV Fundamental Concepts of Programming Lang Januar y 10, 2023 3/52



Avoiding flow control

@ a block of code contains:
@ outside loops like for or while
@ assignment of state variables within loops
e modification of data structures
e branch statements if, elif, else, try, except, finally

@ it seems natural and easy

@ problems with side effects due to state variables and
mutable data structures
@ a mutable object can be changed after its creation
e an immutable object cannot be changed after its
creation

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 4/52



Avoiding flow control

@ the problem
e it difficult to reason accurately about what state data is
In at a given point In a program
o the solution
@ is not to focus on the data construction
e but on describing what the data collection consists of
@ imperative flow control is about the "how" rather
than the "what”

to focus on "what” by refactoring the code

to pus the data construction in a more isolated place

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 5/52



Encapsulation

# configure the data to start with
collection = get_initial_state()
state_var = None
for datum in data_set:
if condition(state_var):
state_var = calculate_from(datum)
new = modify(datum, state_var)
collection.add_to(new)
else:
new = modify_differently(datum)
collection.add_to(new)

# Now actually work with the data

for thing in collection:
process(thing)

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang

January 10, 2023

6/52



Encapsulation

# tuck away construction of data
def make_collection(data_set):
collection = get_initial_state()
state_var = None
for datum in data_set:
if condition(state_var):
state_var = calculate_from(datum, state_var)
new = modify(datum, state_var)
collection.add_to(new)
else:
new = modify_differently(datum)
collection.add_to(new)
return collection

# Now actually work with the data

for thing in make_collection(data_set):
process(thing)

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

7/52



Encapsulation

@ there is no program logic change
@ we shifted from how do we construct the collection
@ to what does make collection() create

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 8/52



FCPL - 13 - Functional Programming in
Practice

© Comprehensions

BV Fundamental Concepts of Programming Lang Januar y 10, 2023 9/52



Comprehensions

@ are a way to make the code more compact
@ they shift the focus from how to what

@ are expressions that use the same keywords as loop
and conditional blocks

@ inverts their order to focus on the data rather than
on the procedure

@ changing the form of the expression makes a large
difference in how we reason about the code

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 10 /52



Comprehensions

collection = list()
for datum in data_set:
if condition(datum) :
collection.append(datum)
else:
new = modify(datum)
collection.append(new)
collection = [d if condition(d) else modify(d)
for d in data_set]

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang

January 10, 2023

11/52



Comprehensions

@ we saved a few characters and lines :)

e we did a mental shifting by thinking what a
collection is

@ we avoided to think about the state of collection in
the loop
@ in Python there are several types of comprehensions
@ generator comprehensions;
@ set comprehensions;
e dict comprehensions.
@ as caveat nesting comprehensions may stop
clarifying and start obscuring

@ the solution is to refactor into functions
Fundamental Concepts of Programming Lang January 10, 2023 12 /52



Genera tors

FCPL - 13 - Functional Programming in
Practice

© Generators

BV Fundamental Concepts of Programming Lang Januan y 10, 2023 13 /52



Generator comprehensions

@ have almost the same syntax as list comprehensions

@ there are no square brackets around them, but
parentheses

o they are also lazy

@ they represent a description of how to get the data
@ but it is not realized until one explicitly asks for it

e by calling .next() on the object
e by looping over it

@ saves memory for large sequences
@ defers computation until is actually needed

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 14 /52



Generator comprehensions

log_lines = (line for line in read_line(huge_log_file)
if complex_condition(line))
# the imperative version
def get_log_lines(log_file):
line = read_line(log_file)
while True:
try:
if complex_condition(line):
yield line
line = read_line(log_file)
except Stoplteration:
raise

log_lines = get_log_lines(huge_log_file)

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang

January 10, 2023

15 /52



Generator comprehensions

# another imperative version
class GetLogLines(object):

def __init__(self, log_file):
self.log_file = log_file
self.line = None

def __iter__(self):
return self

def __next__(self):
if self.line is None:
self.line = read_line(log_file)
while not complex_condition(self.line):
self.line = read_line(self.log_file)
return self.line

log_lines = GetLogLines(huge_log_file)

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang

January 10, 2023

16 /52



Dictionaries and sets comprehensions

FCPL - 13 - Functional Programming in
Practice

@ Dictionaries and sets comprehensions

BV Fundamental Concepts of Programming Lang January 10, 2023 17 /52



Dictionaries and sets comprehensions

>>> {i:chr(65+i) for i in range(6)}
{0: ’A’, 1: *B’, 2: ’C’, 3: °D’, 4: ’E’, 5: ’F’}

>>> {chr(65+i) for i in range(6)}
{’A’, ’B’, ’C’, ’D’, ’E’, ’F’}

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 18 /52



FCPL - 13 - Functional Programming in
Practice

© Recursion

BV Fundamental Concepts of Programming Lang Januan y 10, 2023 19 /52



Recursion

e functional programming is about expressing flow
control using recursion instead of loops

@ thus, we can avoid altering the state of any variable
within the algorithm
@ recursion can be iteration having just another name

@ it is in the style of Lisp

e it is not in the style of Python (slow at recursion and has
limited stack depth sys.setrecursionlimit(5000) default is
1000)

@ recursion can be used in solving problems by
partitioning into smaller problems

@ Python lacks tail call elimination feature
Fundamental Concepts of Programming Lang January 10, 2023 20/52



Example of recursion being iteration

def running_sum(numbers, start=0):
if len(numbers) ==
print()
return
total = numbers[0] + start
print(total, end=" ")
running_sum(numbers[1:], total)

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

21/52



Example of recursion being iteration

@ this approach is not recommended

@ the iteration which modifies the total state
variable is more readable

@ it is likely to call the function on sequences larger
than 1000

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

22/52



Recursion less trivial example

def factorialR(N):

"Recursive factorial function"

assert isinstance(N, int) and N >= 1
return 1 if N <= 1 else N * factorialR(N-1)

def factorialI(N):

"Iterative factorial function"
assert isinstance(N, int) and N >= 1
product = 1

while N >= 1:

product *= N

N -=1

return product

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang

January 10, 2023

23/52



High order functions

from functools import reduce
from operator import mul

def factorialHOF(n):
return reduce(mul, range(l, n+1), 1)

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 24 /52



Quicksort example

def quicksort(lst):

"Quicksort over a list-like sequence"

if len(lst) ==

return lst

pivot = 1st[0]

pivots = [x for x in 1st if x == pivot]

small = quicksort([x for x in 1lst if x < pivot])
large = quicksort([x for x in 1lst if x > pivot])
return small + pivots + large

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang

25 /52



FCPL - 13 - Functional Programming in
Practice

@ Eliminating loops

BV Fundamental Concepts of Programming Lang Januan y 10, 2023 26 /52



Eliminating loops

@ we to try to eliminate all loops from a Python
program

@ this practice is not always desirable because it
affects readability

@ it is simple to apply it in a systematic manner

e if we find a function call inside a loop we can use
the high order function map ()

@ there is no repeated binding of the iteration variable

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 27 /52



Statement and map based loop

for e in it: # statement-based loop
func(e)

map(func, it) # map()-based "loop"

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 28 /52



Statement and map based loop

# let f1, £2, £3 (etc) be functions that perform actions
# an execution utility function
do_it = lambda f, *args: f(*args)

# map()-based action sequence
map(do_it, [f1, £2, £3])

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 29 /52



Using map

>>> hello = lambda first, last: print("Hello", first, last)

>>> bye = lambda first, last: print("Bye", first, last)

>>> _ = list(map(do_it, [hello, byel, [’David’,’Jane’], [’Mertz’,’Doe’]))
Hello David Mertz

Bye Jane Doe

>>> do_all_funcs = lambda fns, *args: [list(map(fn, *args)) for fn in fns]
>>> _ = do_all_funcs([hello, byel,[’David’,’Jane’], [’Mertz’,’Doe’])
Hello David Mertz

Hello Jane Doe

Bye David Mertz

Bye Jane Doe

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 30/52



Eliminating loops

# statement-based while loop
while <cond>:
<pre-suite>
if <break_condition>:
break
else:
<suite>
# FP-style recursive while loop
def while_block():
<pre-suite>
if <break_condition>:
return 1
else:
<suite>
return O

while_FP = lambda: (<cond> and while_block()) or while_FP()
while_FP()

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

31/52



Streams

FCPL - 13 - Functional Programming in

Practice

@ Streams
@ Stream creation
@ Stream operations

VR Fundamental Concepts of Programming Lang

January 10, 2023

32/52



Streams

streams are wrappers around a data source
allow us to operate with the data source
allows bulk processing convenient and fast
do not store data

are not a data structures

do not modify the underlying data source

java.util.stream present from Java 8

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 33/52



Stream creation

private static Employee[] arrayOfEmps =

{

new Employee(1, "Jeff Bezos", 100000.0),
new Employee(2, "Bill Gates", 200000.0),

new Employee(3, "Mark Zuckerberg", 300000.0)

Stream.of (arrayOfEmps) ;

private static List<Employee> emplList = Arrays.asList(arrayOfEmps);
empList.stream();

// streaming from individual objects

Stream. of (arrayOfEmps [0], arrayOfEmps[1], arrayOfEmps[2]);

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 34 /52



Stream builder

Stream.Builder<Employee> empStreamBuilder = Stream.builder();

empStreamBuilder.
empStreamBuilder.
empStreamBuilder.

Stream<Employee>

accept (array0fEmps [0]) ;
accept (array0fEmps[1]) ;
accept (array0fEmps [2]) ;

empStream = empStreamBuilder.build();

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

35/52



forEach operation

QTest
public void whenIncrementSalaryForEachEmployee_thenApplyNewSalary ()
{

empList.stream() .forEach(e -> e.salaryIncrement(10.0));

assertThat (empList, contains(
hasProperty("salary", equalTo(110000.0)),
hasProperty("salary", equalTo(220000.0)),
hasProperty("salary", equalTo(330000.0))
N
}

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

36 /52



map operation

QTest
public void whenMapIdToEmployees_thenGetEmployeeStream()
{

Integer[] emplds = { 1, 2, 3 };

List<Employee> employees = Stream.of (empIds)
.map (employeeRepository: :findById)
.collect(Collectors.toList());

assertEquals(employees.size(), empIds.length);
}

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

37/52



map operation

@ produces a new stream after applying a function to
each element of the original stream

@ the new stream could be of different type

@ in the example we converted a stream of Integers
into a stream of Employees

@ each Integer is passed to the function
employeeRepository: :findById()

@ it returns the Employee object

@ thus, it forms an Employee stream

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 38/52



collect operation

QTest

public void whenCollectStreamToList_thenGetList()

{
List<Employee> employees = empList.stream().collect(Collectors.toList());
assertEquals(empList, employees);

}

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

39/52



collect operation

@ is the way to get the elements out of the stream
once we are done with the processing

e performs mutable fold operations on data elements
held in the Stream instance

e fold operation means repacking elements to some
data structures and applying additional logic

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 40 /52



filter operation

QTest
public void whenFilterEmployees_thenGetFilteredStream()
{

Integer[] emplds = { 1, 2, 3, 4 };

List<Employee> employees = Stream.of (empIds)
.map (employeeRepository: :findById)
.filter(e -> e != null)

.filter(e -> e.getSalary() > 200000)
.collect(Collectors.toList());

assertEquals(Arrays.asList (arrayOfEmps[2]), employees);
}

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

41/52



filter operation

@ produces new stream of elements that passed a
given test
@ the test is specified by a predicate

@ in the example:
o we filtered out the null references for invalid employee ids
o we filetred out the employees having salaries under a
certain threshold

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 42 /52



findFirst operation

QTest

public void whenFindFirst_thenGetFirstEmployeeInStream()
{
Integer[] emplds = { 1, 2, 3, 4 };

Employee employee = Stream.of (empIds)
.map (employeeRepository: :findById)
.filter(e -> e != null)

.filter(e -> e.getSalary() > 100000)
.findFirst()
.orElse(null);

assertEquals(employee.getSalary(), new Double(200000));
}

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

43 /52



findFirst operation

@ return an Optional innstance for the first entry in
the stream
@ the Optional instance may be null

@ in the example:
e we return the employee with the salary greater than a

threshold
e if no employee exists then null is returned

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

44 /52



toArray operation

QTest

public void whenStreamToArray_thenGetArray()

{
Employee[] employees = empList.stream().toArray(Employee[]: :new);
assertThat (empList.toArray(), equalTo(employees));

}

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

45 /52



toArray operation

@ we saw the example with the collection of elements

@ we also can get an array out of the stream by using
toArray () method
@ in the example:

o the Emplyee[]::new creates an empty array of Employee
@ it is then filled with elements from the stream

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 46 /52



flatMap operation

QTest
public void whenFlatMapEmployeeNames_thenGetNameStream()
{
List<List<String>> namesNested = Arrays.asList(
Arrays.asList("Jeff", "Bezos"),
Arrays.asList("Bill", "Gates"),
Arrays.asList("Mark", "Zuckerberg"));

List<String> namesFlatStream = namesNested.stream()
.flatMap(Collection: :stream)
.collect(Collectors.toList());

assertEquals(namesFlatStream.size(), namesNested.size() * 2);

}

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

47 /52



flatMap operation

@ a stream can hold complex data structures like
Stream<List<String>>

o flatMap() helps to flatten the data structure to
simplify further operations

@ in the example:

e we converted the StreamiListiString;; to a simple
Stream|String;

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

48 /52



peek operation

QTest
public void whenIncrementSalaryUsingPeek_thenApplyNewSalary()
{
Employee[] arrayOfEmps =
{
new Employee(1l, "Jeff Bezos", 100000.0),
new Employee(2, "Bill Gates", 200000.0),
new Employee(3, "Mark Zuckerberg", 300000.0)
};

List<Employee> empList = Arrays.asList(arrayOfEmps);

empList.stream()

.peek(e -> e.salaryIncrement(10.0))
.peek(System.out: :println)
.collect(Collectors.toList());

assertThat (empList, contains(
hasProperty("salary", equalTo(110000.0)),
hasProperty("salary", equalTo(220000.0)),
hasProperty("salary", equalTo(330000.0))
));

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023

49 /52



peek operation

e forEach is a terminal operation

@ sometimes we need to perform multiple operations
on each element before any terminal operation

@ peek() is usefull in such situations
@ in the example:

e the first peek() is used to increment the salary of each
employee

o the second peek () is used to print the employees

e finally collect () is used as terminal operation

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 50 /52



FCPL - 13 - Functional Programming in
Practice

© Bibliography

onf. dr. ing. Ciprian-Bogdan Chirila (Unive

Fundamental Concepts of Programming Lang Januan y 10, 2023 51 /52



Bibliography

Horia Ciocarlie - The programming language
universe, second edition, Timisoara, 2013.

Carlo Ghezzi, Mehdi Jarayeri - Programming
Languages, John Wiley, 1987.

Ellis Horrowitz - Fundamentals of programming
languages, Computer Science Press, 1984.

Donald Knuth - The art of computer programming,
2002.

David Merz - Functional programming in Python,
2015.

Eugen Paraschiv - A Guide to Java Streams in Java
8: In-Depth Tutorial With Examples, 2022.

o]y} < [T - T TGE Ty B 1oL E M G PR (VAT Fundamental Concepts of Programming Lang January 10, 2023 52 /52



	Avoiding flow control
	Comprehensions
	Generators
	Dictionaries and sets comprehensions
	Recursion
	Eliminating loops
	Streams
	Stream creation
	Stream operations

	Bibliography

